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Abstract: In order to investigate the nature of complex problem solving (CPS) within the nomological
network of cognitive abilities, few studies have simultantiously considered working memory and
intelligence, and results are inconsistent. The Brunswik symmetry principle was recently discussed
as a possible explanation for the inconsistent findings because the operationalizations differed greatly
between the studies. Following this assumption, 16 different combinations of operationalizations
of working memory and fluid reasoning were examined in the present study (N = 152). Based on
structural equation modeling with single-indicator latent variables (i.e., corrected for measurement
error), it was found that working memory incrementally explained CPS variance above and beyond
fluid reasoning in only 2 of 16 conditions. However, according to the Brunswik symmetry principle,
both conditions can be interpreted as an asymmetrical (unfair) comparison, in which working
memory was artificially favored over fluid reasoning. We conclude that there is little evidence that
working memory plays a unique role in solving complex problems independent of fluid reasoning.
Furthermore, the impact of the Brunswik symmetry principle was clearly demonstrated as the
explained variance in CPS varied between 4 and 31%, depending on which operationalizations of
working memory and fluid reasoning were considered. We argue that future studies investigating
the interplay of cognitive abilities will benefit if the Brunswik principle is taken into account.

Keywords: Brunswik symmetry; bandwidth-fidelity dilemma; working memory; reasoning; complex
problem solving; intelligence; measurement; structural equation modeling

1. Introduction

The question of how complex problem solving (CPS) skills are to be integrated into
the nomological network of intellectual abilities was and still is one of the most examined
questions in CPS research (e.g., Dörner and Funke 2017; Dörner et al. 1983; Funke and
Frensch 2007; Kretzschmar et al. 2016; Süß 1996; Süß and Kretzschmar 2018). While most
studies have investigated the association between (subconstructs of) intelligence and CPS
(for an overview, see Stadler et al. 2015), there are only a few studies that have additionally
considered working memory as a relevant cognitive ability to solve complex problems (for
an overview, see Zech et al. 2017).

Whereas there is a consensus regarding the high correlation between intelligence and
CPS (see, e.g., Kretzschmar et al. 2016; Stadler et al. 2015), the results regarding the effect of
working memory on CPS are inconsistent. For example, in the studies of Wittmann and Süß
(1999) and Greiff et al. (2016), both working memory and (subconstructs of) intelligence
significantly explained variance in CPS. However, in the study of Bühner et al. (2008),
only working memory but not fluid reasoning significantly explained CPS variance if both
abilities were considered. The opposite was found in the study of Süß and Kretzschmar
(2018), in which only fluid reasoning but not working memory significantly explained
variance in CPS. Zech et al. (2017) argued that such inconsistent findings could be explained
by different aggregation (or generalization) levels, as well as different task contents (i.e.,
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verbal, numerical, figural), of the operationalizations used. In detail, Zech et al. (2017) em-
pirically demonstrated—based on a CPS measure with high demands on figural-numerical
contents—that only fluid reasoning but not working memory significantly explained CPS
variance if aggregated (i.e., content-unspecific, based on several different content opera-
tionalizations) or numerical operationalizations were applied; only working memory but
not fluid reasoning significantly explained CPS variance if figural operationalizations were
used; and both working memory and fluid reasoning significantly explained (different
aspects of) CPS variance if verbal operationalizations were considered. Thus, the study
clearly provided evidence that different operationalizations of the same constructs can lead
to different empirical associations. These findings are also in line with research showing
that considering content factors (i.e., verbal, numerical, figural) in addition to cognitive
operations (e.g., fluid reasoning, memory) based on a faceted model (Süß and Beauducel
2005) represents the structure of cognitive abilities very well (e.g., Oberauer et al. 2003;
Süß and Beauducel 2015). Therefore, as Zech et al. (2017) concluded, the key issue with
regard to the interpretation of empirical findings is to consider an adequate match between
different operationalizations, or, in other words, to take the Brunswik symmetry principle
Wittmann (1988) into account.

1.1. The Brunswik Symmetry Principle

Wittmann (1988) developed the Brunswik symmetry principle as an adaption of
Brunswik’s lens model Brunswik (1955). The Brunswik symmetry principle can be used
to describe and explain the association between hierarchically organized constructs at
different levels of aggregation (or generalization). A hierarchically organized construct
is understood as a multidimensional construct, which includes subconstructs of different
levels of specificity on the respective hierarchical levels. For example, based on contempo-
rary models of intelligence, such as the Cattell–Horn–Carroll (CHC) theory McGrew (2009),
the construct of intelligence contains three hierarchical levels (or levels of generalization).
General intelligence (g) is considered to be the highest level (i.e., Stratum III in CHC theory),
whereas fluid reasoning or short-term memory as more specific abilities are considered
to be at the next lower level (i.e., Stratum II), and quantitative reasoning or deductive
reasoning are considered to be the most specific abilities at the lowest level (i.e., Stratum I).
The basic idea of the Brunswik symmetry principle is that a true correlation between two
hierarchically organized constructs is unbiasedly represented by the empirically observed
correlation if and only if (a) the applied measurements correspond to the intended level
of generalization (e.g., fluid reasoning as a broad ability should be operationalized with
verbal, figural, and numerical task contents, and not only with figural task contents, which
would be appropriate as an operationalization for figural fluid reasoning as a more spe-
cific, narrow ability; see, e.g., Gignac 2015; Wilhelm 2005), and (b) the chosen levels of
generalization are similar, which means symmetrical, for both constructs (i.e., a broad
operationalization of a cognitive ability corresponds best to a broad operationalization
of another cognitive ability, and a narrow operationalization corresponds best to another
narrow operationalization with similar task contents). Consequently, an observed correla-
tion underestimates the true correlation between two hierarchically organized constructs if
operationalizations from different levels of generalization or with dissimilar task contents
are correlated. Figure 1 illustrates the idea of the Brunswik symmetry principle.

For the sake of simplicity, let us assume that the two constructs intelligence and
CPS are perfectly correlated (i.e., rtrue = 1.00). Accordingly, the observed correlation will
be highest if the operationalizations are at the same aggregation level and have similar
requirements regarding the contents (green/dotted lines in Figure 1). In this case, a
symmetrical (fair) comparison of the two constructs is conducted, and—regardless of
whether this comparison is conducted on a high or low level of aggregation—the observed
correlation is an unbiased representation of the true correlation between intelligence and
CPS. However, if operationalizations at different aggregation levels (upper red/dashed
line in Figure 1) or operationalizations at the same aggregation level but with different
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content requirements (lower red/dashed line in Figure 1) are used, an asymmetrical
(unfair) comparison is conducted. In this case, the observed correlation will be attenuated.
As summarized by Kretzschmar et al. (2018), this effect is mainly caused by different
construct representations (i.e., whether the operationalization covers the constructs in its
entire breadth or only partial aspects of it) and different reliabilities of aggregation levels
(i.e., aggregation usually leads to higher reliability, which sets the boundary to validity
estimations; see Wittmann 1988).

Figure 1. Illustration of the Brunswik symmetry principle according to Wittmann (1988). Dotted
(green) lines = symmetrical (fair) comparison; dashed (red) lines = asymmetrical (unfair) comparison.

Several studies have empirically demonstrated the usefulness of the Brunswik symme-
try principle in diverse research areas1, for example, studies investigating the correlation
between non-cognitive personality traits and intelligence (e.g., Kretzschmar et al. 2018;
Rammstedt 2018), the association between different cognitive abilities (e.g., Kretzschmar
et al. 2017; Redick et al. 2016; Wittmann and Hattrup 2004), the prediction of academic
performance with cognitive and non-cognitive personality traits (e.g., Coyle et al. 2015;
Kretzschmar et al. 2016; Spengler et al. 2013), and the prediction of occupational and other
behavioral criteria with personality traits (e.g., Figueredo et al. 2016; Paunonen and Ashton
2001; Ziegler et al. 2014). To the best of our knowledge, Zech et al. (2017) is the only study in
which the relations between working memory, fluid reasoning, and CPS were investigated
by systematically considering different aggregation levels and contents of the operational-
izations in terms of the Brunswik symmetry principle. However, Zech et al. (2017) only
considered combinations of working memory and fluid reasoning operationalizations with
the same content (e.g., figural working memory and figural fluid reasoning; gray-shaded
conditions in Figure 2) but not with different contents (e.g., verbal working memory and
figural fluid reasoning; non-shaded conditions in Figure 2). In addition, measurement error

1 The link to the Brunswik symmetry principle is not always made explicitly. For example, as the bandwidth-fidelity dilemma (Cronbach and Gleser
1965) is closely related to the Brunswik symmetry principle, studies on this topic can also be interpreted in terms of the Brunswik symmetry principle.
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was not controlled for in Zech et al.’s (2017) study, which makes it difficult to compare the
results across conditions.

Figure 2. Conditions numbered from 1 to 16 as combinations of different aggregation levels and
contents of the operationalizations investigated in the present study (each condition with two
models; see Figure 3). Gray-shaded conditions were examined in Zech et al.’s (2017) study and
represent symmetrical (fair) combinations in terms of the predictor-predictor symmetry as similar
operationalizations of working memory and fluid reasoning were considered. The other conditions
can be considered as potentially asymmetrical (unfair) in terms of the predictor-predictor symmetry
as different aggregation levels or contents were considered. Ad-hoc expectations whether working
memory incrementally explains variance above and beyond fluid reasoning (+) or not (−) are
displayed for each condition.

Figure 3. Structural models for all analyses. Model 1 (without dashed line): Complex problem
solving (CPS) variance is explained by fluid reasoning, in which variance is explained by working
memory. Model 2 (with dashed line): A direct path from working memory to CPS is added to
Model 1. Measurement models are omitted for the sake of simplicity.

In summary, although Zech et al. (2017) provided an important impulse for research
into the relations between working memory, fluid reasoning, and CPS considering the
Brunswik symmetry principle, a more comprehensive view is necessary to understand the
relations of these cognitive constructs and the impact of the Brunswik symmetry principle.

1.2. The Present Study

The present study had two aims. First, we wanted to conceptually replicate Zech
et al.’s (2017) finding findings regarding the association between working memory, fluid
reasoning, and CPS based on different measurements. In detail, we were interested in
whether working memory incrementally explains variance in CPS above and beyond fluid
reasoning. According to the findings of Süß and Kretzschmar (2018), the CPS measure
used in the present study put similar demands on the content as the CPS measure in Zech
et al.’s (2017) study, that is, strong requirements concerning figural content, to a slightly lesser
extent requirements concerning numerical content, and only weak requirements concerning
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verbal content. Therefore, it can be assumed that the findings of the present study would be
consistent with those of the conditions considered in Zech et al.’s (2017) study.

Second, we wanted to investigate whether it is possible to predict results with the
help of the Brunswik symmetry principle. To do so, we systematically manipulated the
symmetrical match with regard to aggregation levels and contents of the operationaliza-
tions. In detail, we considered 16 combinations of operationalizations (i.e., four different
operationalizations each for working memory and fluid reasoning: verbal, numerical, and
figural content, as well as an aggregated measure, over all three content types), which
were used to explain variance in CPS (see Figure 2). Following the Brunswik symmetry
principle, the highest association between the operationalizations should be observed in a
symmetrical (fair) condition between working memory, fluid reasoning, and CPS.

As three constructs were investigated in this study, the Brunswik symmetry principle
can have an effect in two different ways. The first type, which we call predictor-criterion
symmetry from here on, is about a symmetrical (fair) match between predictors (i.e., work-
ing memory and fluid reasoning) and the criterion (i.e., CPS). For example, as the CPS
operationalization used in the present study put strong requirements on figural and nu-
merical content and weak demands on verbal content, a condition in which figural and/or
numerical operationalizations of both working memory and fluid reasoning were applied
can be considered a symmetrical (fair) comparison. Conditions in which the operational-
izations of working memory and fluid reasoning did not match the content requirements
or aggregation level of the CPS operationalization can be considered asymmetrical (un-
fair), whereby a condition with only verbal operationalizations of the predictors can be
considered the most asymmetrical. The predictor-criterion symmetry can be evaluated on
the basis of the explained variance of the criterion: The higher/lower the explained CPS
variance, the more symmetrical/asymmetrical the comparison is.

The second type, hereinafter referred to as predictor-predictor symmetry, refers to the
similarity of operationalizations of the two predictors to each other. If operationalizations
with the same content requirements or aggregation levels are used for working memory
and fluid reasoning (e.g., numerical operationalizations for each), then this can be consid-
ered a symmetrical (fair) condition. However, if operationalizations with different content
requirements or aggregation levels are used (e.g., aggregated working memory and verbal
fluid reasoning), then this is considered an asymmetrical (unfair) condition in which either
working memory or fluid reasoning is favored, depending on which has a better match
to the content requirements of the criterion. For example, this would mean here that a
verbal operationalization of one predictor and a figural or numerical operationalization of
the other predictor would lead to a systematic discrimination of the former (i.e., underes-
timation of its relation with the criterion). Therefore, in terms of the predictor-predictor
symmetry, only comparisons with similar operationalizations of the predictors can be
considered as symmetrical (fair).

In summary, the following expectations were derived based on the Brunswik sym-
metry principle in combination with Zech et al.’s (2017) findings. The first two aspects
relate to the question whether and under which conditions working memory explains CPS
variance above and beyond fluid reasoning. The third aspect relates to the question of
the most symmetrical (fair) match, that is, whether different operationalizations represent
differently symmetrical matches.

1. With regard to the first aim of the study (i.e., replication of previous findings) and,
thus, according to Zech et al.’s (2017) results, working memory does not incrementally
explain variance in CPS above and beyond fluid reasoning if aggregated (i.e., content-
unspecific based on all three content operationalizations; condition 1 in Figure 2) or
numerical (condition 11) operationalizations were applied. Furthermore, working
memory incrementally explains variance in CPS above and beyond fluid reasoning if
figural operationalizations were considered (condition 16). We had no expectations re-
garding verbal operationalizations (condition 6) as Zech et al.’s (2017) study provided
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different findings with regard to different CPS aspects, which were not considered in
the present study (see below).

2. With regard to the second aim of the study and in terms of the predictor-predictor sym-
metry (i.e., considering combinations of different aggregation levels and contents of
the operationalizations of the predictors), we expected an asymmetrical (unfair) com-
parison if a verbal operationalization was combined with any other operationalization
as the CPS measure used in the present study had only weak requirements concerning
verbal contents. In detail, aggregated (condition 5), numerical (condition 7), and figu-
ral (condition 8) working memory should incrementally explain CPS variance above
and beyond verbal fluid reasoning. Consequently, verbal working memory should
not incrementally explain CPS variance above and beyond aggregated (condition
2), numerical (condition 10), and figural (condition 14) fluid reasoning. We had no
specific expectations regarding the other conditions (i.e., 3, 4, 9, 12, 13, and 15). As
figural and numerical abilities are rather highly correlated, their interaction within an
aggregated operationalization and their relation to an aggregated operationalization
is difficult to predict.2

3. With regard to the CPS measure used in the present study and combinations of the
same content (i.e., conditions 1, 6, 11, and 16), a symmetrical (fair) comparison in
terms of the predictor-criterion symmetry would be based on figural and numerical
operationalizations of working memory and fluid reasoning (as the CPS measure had
only weak requirements regarding verbal content). Given equal reliability across all
conditions, it means the highest proportion of CPS variance should be explained based
on figural working memory and fluid reasoning operationalizations (condition 16),
followed by numerical operationalizations of both constructs (condition 11). Verbal
operationalizations should explain the least variance in CPS (condition 6). Aggregated
operationalizations (condition 1) should explain more CPS variance than verbal oper-
ationalizations but it is unclear whether less (due to the irrelevant verbal aspect) or
equal/more (due to the combination of figural and numerical aspects) CPS variance
than either figural or numerical operationalizations alone. As outlined above, we had
no specific expectation in terms of the predictor-criterion symmetry regarding the
other conditions combining figural and numerical contents.

2. Materials and Methods

The present study used the freely available data set of Kretzschmar and Süß (2015). In
the following, only those operationalizations are described which are relevant to the research
question at hand. For a complete description of all operationalizations, see Kretzschmar and
Süß (2015) and Süß and Kretzschmar (2018). Please note that condition 1 of the present study
(see Figure 2) was investigated in a modified form in Süß and Kretzschmar (2018) in the
context of a broader research question regarding the influence of knowledge and cognitive
abilities on CPS performance and based on the same data set. Although the analysis
strategy in both studies differs in some crucial points (i.e., with regard to the consideration
of the measurement error, different calculations of the CPS score, and including further
variables irrelevant for the present research question), the results concerning condition 1
are presented here mainly for the sake of completeness. A systematic investigation of the
Brunswik symmetry principle based on the other 15 conditions as the main aim of the present
study is a novel and as yet unexamined research question. As the present study is based on
an already used data set, we consider the present study as exploratory (Thompson et al. 2020),
which is addressed in more detail in the Discussion section.

2 As one reviewer correctly pointed out, one could also expect that figural operationalizations should incrementally explain CPS variance above and
beyond numerical operationalizations as we assume that the CPS measure put stronger requirements on figural content compared to numerical
content. We address this issue in the Discussion section.
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2.1. Participants

The full data set consists of 159 participants, from which seven non-native German
speakers were excluded for the analysis due to the high language requirements of the
ability tests. Participants of the final sample (N = 152) had a mean age of 23.99 (SD = 4.43)
years. All participants were university students as in previous studies (e.g., Wittmann and
Süß 1999; Zech et al. 2017). Gender was equally distributed.

2.2. Material
2.2.1. Working Memory

Three tasks from the computerized working memory test battery by Oberauer et al.
(2003) were used. The figural dot span task (adaptive version; sometimes named spatial co-
ordination) primarily measured the coordination function, whereas the numerical memory
updating task (adaptive version) and the verbal reading span task (non-adaptive) primarily
measured the storage and processing function of working memory. All working memory
tasks can be considered as speeded power tasks as participants had to answer within a
certain time frame. Each of the three task scores was z-standardized. The aggregated
working memory score was calculated as the average of these task scores.

2.2.2. Fluid Reasoning

Selected tasks of the Berlin Intelligence Structure (BIS) test (Jäger et al. 1997) measur-
ing fluid reasoning and processing speed were applied. For the present study, we only
considered the nine fluid reasoning tasks as processing speed showed only weak or no
associations with CPS in the present study (see Süß and Kretzschmar 2018), as well as
in previous studies (see, e.g., Kretzschmar et al. 2016; Süß 1996). In line with the test
instruction, the fluid reasoning tasks were completed under time constraints and, thus, can
be considered as speeded power tasks, as well. All nine task scores were z-standardized.
In each case, three task scores were averaged in order to obtain a content-specific score
for verbal, numerical, and figural fluid reasoning, respectively. Following the standard
procedure of the BIS test, the aggregated fluid reasoning score was calculated based on
three content-balanced parcels (for further details, see, e.g., Süß and Beauducel 2015).

2.2.3. Complex Problem Solving

The computer-based measurement FSYS (Wagener 2001) was used. FSYS is based on
Dörner’s (1986) theoretical framework regarding the assessment of CPS. According to Süß
and Kretzschmar (2018), FSYS can be classified as a complex real-life-oriented system (also
named microworld in CPS research) in distinction to complex artificial systems. The goal
of FSYS is to manage five independent forests to increase the financial value of the forest
enterprise. In order to do so, 85 variables connected via linear, exponential, or logistic
relations have to be monitored or manipulated. Following the standard procedure of CPS
assessment, participants received an introduction including a non-evaluated exploration
phase before the actual control phase was completed (Kretzschmar et al. 2017). Participants
were asked to finish the control phase within 90 min; thus, FSYS can also be considered as a
speeded power test. We used the SKAPKOR scale (ranging between 0 and 100 with higher
scores representing a better CPS performance) which is based on the forest enterprise’s
total capital after 50 simulated months as the CPS performance indicator (see Wagener
2001).3 Previous studies provided evidence regarding the validity of FSYS, in particular,
with regard to educational (Stadler et al. 2016) and occupational (Wagener and Wittmann
2002) achievements.

In addition to the CPS control performance, the acquired knowledge about the CPS
system is often considered as a further CPS indicator (e.g., Fischer et al. 2012). Therefore,

3 The present study used the performance scale of FSYS which was most comparable to CPS operationalizations of previous studies. FSYS also
provides additional behavior-based scales, some of which are experimental in nature and were of insufficient psychometric quality in the present
study (see, Kretzschmar and Süß 2015). Thus, these scales were not considered here but are included in the freely available data set.
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Wagener’s (2001) FSYS knowledge test was used to assess the knowledge acquired during
the 50 simulated months. The 11 multiple-choice items (dichotomous scoring) cover
heterogeneous aspects of the system with regard to system and action knowledge. We used
the average test score across all items.

Previous research has shown that the correlation between the CPS performance
and knowledge indicators is relatively high (see, e.g., Goode and Beckmann 2010; Greiff
et al. 2013). Therefore, the empirical distinction between knowledge acquisition and control
performance as separate CPS processes was critically questioned from a psychometric (e.g.,
Kretzschmar et al. 2017), as well as from a criterion validity (Kretzschmar 2015), perspective.
Hence, for the present study and in line with previous research (e.g., Kretzschmar et al.
2014; Mainert et al. 2015; Rudolph et al. 2018), we used an averaged total CPS score based
on the z-standardized control and knowledge scores.4

2.3. Procedure

The assessment was split into two sessions, each lasting about 2.5 h. Working memory
and fluid reasoning were assessed in the first session, whereas CPS and other, for the
present study irrelevant, constructs were assessed in the second session. The study was
originally designed as a training study; thus, the time between the two sessions varied
between one day and one week (for further details of the study design, see, Kretzschmar
and Süß 2015). The tests were administered in groups of up to 20 people in computer
laboratories. As a compensation for their effort, participants received course credit or could
participate in a book raffle. All participants were informed in advance about the content
of the study, the voluntary nature of their participation, and data protection issues. All
subjects provided informed consent.

2.4. Statistical Analysis

As described in the Material section, a total scale score was calculated for each op-
erationalization and for each level of aggregation. Correlations between these scores,
as well as their corresponding 95% confidence intervals (CI), were calculated based on
5000 bootstrapped Pearson correlations. Reliability was estimated via McDonald’s ω (see,
e.g., Dunn et al. 2013) if multiple indicators were available. Reliability estimations were
taken from Wagener (2001) and Oberauer et al. (2003) for the CPS performance scale and
for the content scores of working memory, respectively.

To control for measurement error of the different operationalizations, we used single-
indicator latent variables (see, e.g., Brown 2015) for all analyses. In single-indicator models,
latent variables are each defined by one indicator consisting of an equally-weighted compos-
ite score (i.e., the manifest mean scale score). The true-score variance for the latent variables
is obtained by fixing the unstandardized error of their indicator to (1 − reliability) ∗ s2,
where s2 is the sample variance of the composite score.

Based on the single-indicator latent variables, we applied structural equation modeling
(SEM) to test whether working memory explains CPS variance above and beyond fluid
reasoning. To do so, we first estimated Model 1 as presented in Figure 3. In this model, CPS
variance is directly explained by fluid reasoning (path b in Figure 3), in which variance is
explained by working memory (path a in Figure 3). In the next step, we estimated Model 2,
in which we added a direct path from working memory to CPS in Model 1 (path c in
Figure 3). Based on these two models, the incremental explained CPS variance (∆R2) was
evaluated based on a hierarchical F test (Cohen et al. 2003, p. 171, formula 5.5.1) with
α = 0.003 (= 0.05/16; Bonferroni correction). The 95% CIs of the standardized regression
weights and of the explained variances were calculated based on 5,000 bootstrapped
draws. For all models, maximum likelihood (ML) estimation was used. Model fit of

4 We have also conducted the analyses with the CPS control performance indicator only (i.e., without the indicator of knowledge acquisition)
to examine the robustness of the results. Although the effect sizes (e.g., explained CPS variances) differed, the overall pattern of findings was
comparable to that of the aggregated CPS score presented here.
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Model 1 was evaluated based on standard fit indices and the commonly used cutoff
values (e.g., Schermelleh-Engel et al. 2003). Specifically, we used the χ2 goodness-of-
fit statistic (p > 0.05), Comparative Fit Index (CFI ≥ 0.97), Root Mean Square Error of
Approximation (RMSEA ≤ 0.05), and Standardized Root Mean Square Residual (SRMR ≤
0.05). Model 2 was fully saturated (i.e., with zero degrees of freedom); thus, model fit could
not be evaluated.

The sample size was comparable to or larger than those of most previous studies
(e.g., Bühner et al. 2008; Wittmann and Süß 1999; Zech et al. 2017) and sufficient for
SEM based on single-indicator latent variables in the present study. Following the 10:1
to 20:1 rule of thumb regarding the ratio of estimated parameters to sample size (e.g.,
Kyriazos 2018), the optimal sample size was between 90 and 180 participants as nine
parameters had to be estimated in the most complex model. However, as the sample
size was not optimal to investigate weak to moderate correlations (see, Kretzschmar and
Gignac 2019), point estimates of correlations should be interpreted only with considering
the bootstrapped CIs (Cumming 2013). Furthermore, 23.68% data for the CPS scores were
missing. The assumption of missing completely at random (MCAR) seems to be reasonable
and was empirically supported based on Little’s (1988) test considering all scale scores and
demographic data in the data set: χ2(22) = 19.88, p = 0.59. As methodological studies
have shown that missing data methods provide virtually unbiased results for this or even
larger amount of missing data under the assumption of MCAR (e.g., Dong and Peng
2013), we used the Full Information Maximum Likelihood (FIML) procedure to account
for missing data.5 The data are publicly available via the Open Science Framework:
https://osf.io/n2jvy. The study was not preregistered and, thus, should be considered
as exploratory.

3. Results

Table 1 displays the descriptive statistics, reliability estimates, and correlations. Stan-
dardized regression weights as labeled in Figure 3 and explained CPS variance for each
model are shown in Table 2. All models demonstrated good to very good model fit ac-
cording to our evaluation criteria, except those of conditions 5, 7, 8, and 14, which are
discussed below.

5 The analyses were also performed on the basis of complete data only (i.e., without missing data, N = 116), which resulted in almost identical results
to those presented here.

https://osf.io/n2jvy
https://osf.io/n2jvy
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Table 1. Descriptive statistics, reliabilities, and correlations.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Working memory
(1) aggregated 1.00
(2) verbal 0.33 [0.19,0.47] 1.00
(3) numerical 0.43 [0.28,0.57] 0.38 [0.22,0.52] 1.00
(4) figural 0.26 [0.11,0.40] 0.15 [0.00,0.30] 0.28 [0.12,0.44] 1.00

Fluid reasoning
(5) aggregated 0.52 [0.41,0.63] 0.25 [0.10,0.39] 0.37 [0.23,0.49] 0.51 [0.39,0.61] 1.00
(6) verbal 0.25 [0.08,0.40] 0.28 [0.13,0.42] 0.05 [−0.12,0.22] 0.20 [0.04,0.34] 0.33 [0.17,0.47] 1.00
(7) numerical 0.50 [0.37,0.61] 0.24 [0.10,0.37] 0.43 [0.30,0.55] 0.41 [0.27,0.53] 0.42 [0.27,0.54] 0.21 [0.04,0.36] 1.00
(8) figural 0.42 [0.29,0.53] 0.04 [−0.11,0.19] 0.32 [0.19,0.44] 0.53 [0.41,0.64] 0.53 [0.41,0.64] 0.35 [0.19,0.50] 0.48 [0.35,0.58] 1.00

CPS
(9) total 0.31 [0.13,0.48] 0.16 [−0.03,0.35] 0.20 [0.01,0.38] 0.28 [0.12,0.42] 0.42 [0.25,0.57] 0.15 [−0.01,0.31] 0.38 [0.21,0.54] 0.42 [0.26,0.56] 1.00
(10) control 0.32 [0.15,0.47] 0.13 [−0.05,0.31] 0.21 [0.02,0.38] 0.32 [0.16,0.46] 0.33 [0.16,0.49] 0.02 [−0.14,0.19] 0.37 [0.20,0.52] 0.36 [0.18,0.50] 0.51 [0.37,0.64] 1.00
(11) knowledge 0.22 [0.02,0.41] 0.15 [−0.06,0.35] 0.14 [−0.05,0.33] 0.16 [−0.00,0.32] 0.40 [0.20,0.58] 0.24 [0.06,0.42] 0.30 [0.10,0.47] 0.37 [0.20,0.52] 0.51 [0.37,0.64] 0.51 [0.37,0.64] 1.00

M 0.00 0.07 0.02 0.04 0.00 0.00 0.00 0.00 0.00 57.59 5.32
SD 0.72 0.95 0.98 1.00 0.81 0.71 0.77 0.80 0.87 22.51 1.94
ω 0.57 0.88 0.82 0.73 0.74 0.54 0.66 0.72 0.69 0.80 0.41

Note: All aggregated scores and all content-specific fluid reasoning scores were calculated based on z-standardized scores (i.e., with M = 0.00 and SD = 1.00). Manifest Pearson’s correlations between
aggregated scores and sub-scores were corrected for overlap (i.e., part-whole correlation). Ninety-five percent confidence intervals (CI) are stated in brackets.
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Table 2. Model parameters for different conditions.

WM Aggregated WM Verbal WM Numerical WM Figural

Fluid Reasoning Model 1 Model 2 Model 1 Model 2 Model 1 Model 2 Model 1 Model 2

aggregated Condition 1 Condition 2 Condition 3 Condition 4
a 0.65 [0.52;0.77] 0.65 [0.52;0.77] 0.29 [0.12;0.45] 0.29 [0.12;0.45] 0.44 [0.29;0.59] 0.44 [0.29;0.59] 0.65 [0.52;0.78] 0.65 [0.52;0.79]
b 0.53 [0.33;0.71] 0.49 [0.11;0.83] 0.53 [0.32;0.72] 0.52 [0.29;0.72] 0.53 [0.32;0.72] 0.52 [0.27;0.77] 0.52 [0.32;0.71] 0.53 [0.20;0.93]
c 0.05 [−0.33;0.46] 0.02 [−0.20;0.25] 0.01 [−0.26;0.29] −0.01 [−0.41;0.31]
R2

adj 0.27 [0.10;0.50] 0.26 [0.11;0.53] 0.27 [0.10;0.51] 0.27 [0.10;0.52] 0.27 [0.10;0.51] 0.27 [0.10;0.53] 0.27 [0.10;0.50] 0.26 [0.10;0.54]

verbal Condition 5 Condition 6 Condition 7 Condition 8
a 0.33 [0.12;0.53] 0.32 [0.11;0.52] 0.35 [0.17;0.52] 0.35 [0.16;0.52] 0.07 [−0.15;0.28] 0.06 [−0.16;0.27] 0.28 [0.07;0.47] 0.27 [0.07;0.46]
b 0.23 [0.01;0.45] 0.04 [−0.22;0.28] 0.21 [−0.01;0.43] 0.14 [−0.09;0.37] 0.21 [−0.01;0.43] 0.18 [−0.05;0.40] 0.22 [0.00;0.44] 0.10 [−0.14;0.33]
c 0.41 [0.15;0.66] 0.14 [−0.12;0.39] 0.24 [0.01;0.48] 0.33 [0.12;0.55]
R2

adj 0.05 [−0.01;0.20] 0.17 [0.03;0.42] 0.04 [−0.01;0.18] 0.04 [−0.01;0.21] 0.04 [−0.01;0.18] 0.08 [0.00;0.29] 0.04 [−0.01;0.19] 0.13 [0.03;0.33]

numerical Condition 9 Condition 10 Condition 11 Condition 12
a 0.64 [0.49;0.77] 0.63 [0.48;0.77] 0.29 [0.11;0.44] 0.28 [0.11;0.44] 0.53 [0.37;0.67] 0.53 [0.37;0.68] 0.54 [0.38;0.69] 0.53 [0.37;0.69]
b 0.50 [0.30;0.68] 0.39 [0.04;0.77] 0.49 [0.29;0.68] 0.47 [0.25;0.67] 0.49 [0.29;0.67] 0.49 [0.22;0.81] 0.49 [0.29;0.68] 0.42 [0.13;0.70]
c 0.14 [−0.30;0.52] 0.05 [−0.19;0.28] −0.01 [−0.39;0.31] 0.12 [−0.17;0.40]
R2

adj 0.24 [0.08;0.46] 0.23 [0.09;0.48] 0.23 [0.08;0.46] 0.23 [0.08;0.46] 0.23 [0.08;0.44] 0.23 [0.08;0.49] 0.24 [0.08;0.45] 0.23 [0.09;0.46]

figural Condition 13 Condition 14 Condition 15 Condition 16
a 0.53 [0.38;0.67] 0.52 [0.37;0.66] 0.06 [−0.12;0.24] 0.05 [−0.13;0.23] 0.40 [0.24;0.55] 0.39 [0.24;0.54] 0.68 [0.54;0.81] 0.69 [0.54;0.82]
b 0.54 [0.35;0.71] 0.44 [0.12;0.69] 0.53 [0.34;0.71] 0.52 [0.32;0.70] 0.53 [0.34;0.71] 0.51 [0.27;0.72] 0.52 [0.32;0.70] 0.56 [0.22;0.92]
c 0.16 [−0.15;0.48] 0.18 [−0.03;0.39] 0.04 [−0.21;0.31] −0.05 [−0.44;0.29]
R2

adj 0.29 [0.11;0.51] 0.28 [0.13;0.52] 0.28 [0.11;0.50] 0.31 [0.14;0.54] 0.28 [0.11;0.50] 0.27 [0.12;0.51] 0.27 [0.10;0.48] 0.27 [0.11;0.52]

Note: WM = working memory. Model 1 and 2 as displayed in Figure 3. a, b, and c = standardized path coefficients as labeled in Figure 3. R2
adj = explained CPS variance adjusted regarding the number of

predictors. Ninety-five percent CI are stated in brackets. Conditions highlighted in bold represent conditions in which working memory incrementally explained variance in CPS above and beyond
fluid reasoning.
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3.1. Does Working Memory Incrementally Explain CPS Variance?

With regard to replicating Zech et al.’s (2017) findings, our results were only partly
consistent. As in Zech et al.’s (2017) study, working memory did not incrementally explain
variance in CPS above and beyond fluid reasoning if aggregated (condition 1 in Figure 2) or
numerical (condition 11) operationalizations were applied. However, the same pattern was
found for verbal (condition 6) and figural (condition 16) operationalizations, which was
not in line with Zech et al.’s (2017) results. These findings were supported by hierarchical F
tests, of which none indicated an incremental explanation of CPS variance in Model 2 of
these conditions (all ps > 0.003).

With regard to the predictor-predictor symmetry and, thus, considering the conditions
in which combinations of different aggregation levels and contents were examined, all of
our six expectations except for one were confirmed. In detail and regarding verbal fluid
reasoning, aggregated (∆R2

adj = 0.12, hierarchical F test: p < 0.001; condition 5) and figural

(∆R2
adj = 0.09, hierarchical F test: p < 0.001; condition 8) working memory incrementally

explained CPS variance above and beyond verbal fluid reasoning as expected. However
and against our expectation, numerical working memory did not incrementally explain
CPS variance above and beyond verbal fluid reasoning (∆R2

adj = 0.04, hierarchical F test:
p = 0.004; condition 7). With regard to verbal working memory and in line with our
expectations, verbal working memory did not incrementally explain CPS variance above
and beyond aggregated (∆R2

adj = 0.00; condition 2), numerical (∆R2
adj = 0.00; condition

10), and figural (∆R2
adj = 0.03, hierarchical F test: p = 0.009; condition 14) fluid reasoning.

These findings also explain why the fits of Model 1 in conditions 5, 7, 8, and 14 were not
acceptable. Although the hierarchical F-test showed statistically significant incremental
variance explanation only in conditions 5 and 8, there was at least a weak correlation
between working memory and CPS in all four conditions, which was not adequately
considered in these models (see Table 2). With regard to the conditions for which we had no
expectations (i.e., conditions 3, 4, 9, 12, 13, and 15), working memory did not incrementally
explain CPS variance above and beyond fluid reasoning in any of them (hierarchical F tests:
all ps > 0.003).

In summary, working memory explained CPS variance above and beyond fluid
reasoning in only 2 out of 16 conditions (max. ∆R2

adj = 0.12).

3.2. Do Different Combinations Represent Differently Symmetrical Matches?

The results regarding the most symmetrical match in terms of the predictor-criterion
symmetry (i.e., indicated by the highest CPS variance explained) demonstrated substantial
differences between the conditions. The combination of verbal working memory and
figural fluid reasoning (condition 14) showed the numerically highest explanation of
CPS variance (R2

adj = 0.31). Combinations with verbal fluid reasoning (i.e., conditions 5

to 8) showed the numerically lowest explanation of CPS variance (0.04 ≤ R2
adj ≤0.17).

All other combinations showed relatively similar proportions of explained CPS variance
(0.23 ≤ R2

adj ≤ 0.28). In addition, our four expectations regarding the most symmetrical
match based on combinations of the same content were mostly correct. As expected, verbal
operationalizations (condition 6) explained least CPS variance (R2

adj = 0.04). Furthermore
and in line with our expectations, figural operationalizations (condition 16) showed some
of the highest CPS variance explanations (R2

adj = 0.27). The CPS variance explained by

numerical operationalizations (condition 11) was numerically lower (R2
adj = 0.23) but similar

to figural operationalizations. Aggregated operationalizations (condition 1) explained
more CPS variance (R2

adj = 0.26) than the verbal operationalizations and virtually the same
proportion as the figural and numerical operationalizations.

In summary, the proportion of explained CPS variance varied between 4 and 31%,
depending on which operationalizations of working memory and fluid reasoning were
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considered. Moreover, the Brunswik symmetry principle seems a valid indicator of which
combinations of operationalizations would show the most or least explained variance.

4. Discussion

The present study aimed to shed further light on the relations between working
memory, fluid reasoning, and CPS, on the one hand, and to empirically evaluate the
Brunswik symmetry principle (Wittmann 1988), on the other. By considering 16 different
combinations of operationalizations of working memory and fluid reasoning, we found
that working memory incrementally explained CPS variance above and beyond fluid
reasoning in only two of these conditions. Furthermore, the findings provide clear evidence
that different operationalizations of the same constructs can lead to very different results,
which can be explained by the Brunswik symmetry principle.

4.1. Working Memory, Fluid Reasoning, and CPS

The relation of working memory and intelligence (e.g., Ackerman et al. 2005; Oberauer
et al. 2005) and of intelligence and CPS (e.g., Kretzschmar et al. 2016; Stadler et al. 2015)
within the nomological network of cognitive abilities have stimulated a great amount of
research. However, only a few studies have simultaneously considered all three constructs
with inconsistent results. Zech et al. (2017) argued that these inconsistent results can be
explained by means of the Brunswik symmetry principle; that is, operationalizations that
differ regarding the level of aggregation (or generalization) and task contents (i.e., verbal,
numerical, figural) lead to different results with regard to the interplay of working memory,
fluid reasoning, and CPS. Extending this idea, we systematically considered four different
operationalizations (i.e., aggregated, verbal, numerical, and figural) of both working
memory and fluid reasoning. Our results showed that working memory incrementally
explained CPS variance only in 2 out of 16 conditions. For both conditions, we expected
that working memory should incrementally explain CPS variance due to an asymmetrical
(unfair) comparison in terms of the predictor-predictor symmetry. Thus, in these conditions
the operationalization of fluid reasoning did not match well the cognitive requirements
regarding the content of the CPS operationalization which results in a relatively stronger
impact of working memory.

Another interesting finding is that working memory did not incrementally explain
CPS variance in any of the conditions that were also considered in Zech et al.’s (2017) study.
The most obvious difference between the present study and that of Zech et al. (2017) is
in the operationalizations of working memory. While broader operationalizations were
used in Zech et al.’s (2017) study, each with several tasks balancing different processes
of working memory (see Oberauer et al. 2003), the content-specific operationalizations in
the present study consisted of only one task each. Therefore, working memory in Zech
et al.’s (2017) study was more representative of the construct (see Shadish et al. 2002) and
less task-specific than in the present study. As broader and, thus, more representative
operationalizations provide more accurate insights into the relation between different
constructs (for an empirical demonstration, see, e.g., Kretzschmar et al. 2016), the findings of
the present study are not suitable to generally rule out that working memory incrementally
explains CPS variance above and beyond fluid reasoning in some conditions. However,
it should be noted that the explanation of the differently broad operationalizations of
working memory is not sufficient when one looks at the studies that used comparatively
narrow operationalizations of working memory as in the present study and applying a
symmetrical (fair) comparison in terms of the predictor-predictor symmetry regarding
working memory and fluid reasoning (e.g., Bühner et al. 2008).

Another explanation for the inconsistent results between Zech et al.’s (2017) and the
present study refers to the different cognitive requirements of CPS operationalizations.
Apart from Wittmann and Süß’s (1999) study, the present study, as well as all other studies
on this topic, used one specific CPS operationalization. It may well be that the cognitive
requirements associated with working memory differ substantially between the different
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CPS operationalizations. In order to draw generalizable conclusions on a level of psycho-
logical constructs, it is therefore essential for future research to simultaneously consider
different CPS operationalizations (Funke et al. 2017).

In summary, the findings of the present study considered on its own indicate that
there is little evidence that working memory incrementally explains CPS variance above
and beyond fluid reasoning, particularly if a symmetrical (fair) comparison of all opera-
tionalizations is considered. In the context of the other studies that examined the relation
of working memory, fluid reasoning, and CPS, the present findings fit well into the rather
inconsistent picture of empirical results. Whether or not working memory plays a unique
part in solving complex problems beyond (subconstructs of) intelligence, therefore, requires
further research that necessarily considers broad operationalizations of all three constructs
(see, e.g., Wittmann and Süß 1999).

4.2. The Brunswik Symmetry Principle and the Choice of Operationalizations

The present study is one of a series of studies (e.g., Kretzschmar et al. 2017; Wittmann
and Hattrup 2004; Zech et al. 2017) that have emphasized and empirically demonstrated
the importance of the Brunswik symmetry principle (Wittmann 1988). As can be seen
from the findings of these studies, the choice of operationalizations in terms of the level of
aggregation (or generalization) and breadth of content can have a substantial impact on the
empirical findings. This is also relevant, for example, to the debate on the extent to which
working memory and fluid reasoning represent different or identical cognitive constructs
(e.g., Ackerman et al. 2005; Oberauer et al. 2005). In the present study, the correlations
between the two constructs ranged from 0.04 to 0.53 (see Table 1; disattenuated correlation:
rmax = 0.73). Depending on the level of aggregation, the present study provides further
evidence that both constructs are highly correlated (Oberauer et al. 2005). Therefore,
we conclude that the Brunswik symmetry principle adds another layer to the decision-
making process when it comes to selecting an adequate operationalization of psychological
constructs not only for CPS research (see Flake and Fried 2020).

However, the present study also demonstrated that the Brunswik symmetry princi-
ple can guide this decision-making process. An asymmetrical (unfair) comparison, and
thus attenuated empirical correlations, can be avoided by considering the best possible
match between different operationalizations—either based on considerations of cogni-
tive requirements or on previous research findings (e.g., for a systematic investigation of
personality-ability relations, see Kretzschmar et al. 2018). Even if no such information
should be available, the Brunswik symmetry principle can be helpful for the choice of oper-
ationalization. Broader operationalizations always include narrower operationalizations,
so that on the basis of the broad operationalization it can be exploratively investigated
(de Groot 2014) which aggregation level represents the more appropriate level of symme-
try (for an empirical demonstration, see, e.g., Kretzschmar et al. 2017). The higher time
requirement for conducting a study based on broader operationalizations should normally
be compensated for by substantially reducing the risk of finding zero or weak empirical as-
sociations of actually correlated psychological constructs because of choosing a too narrow
operationalization out of common practice or unawareness. For example, Raven’s Matrices
tests (Raven et al. 1998) or similar measurements of figural fluid reasoning are often used
as the only operationalization and also as one of the best indicators of general intelligence
(g). This practice is not only based on questionable assumptions regarding the operational-
ization of g (see, e.g., Gignac 2015; Lohman and Lakin 2011; Süß and Beauducel 2015) but
is also very likely to lead to biased results (for an empirical demonstration regarding the
construct validity of cognitive abilities, see, e.g., Kretzschmar et al. 2016). Therefore, in case
of uncertainty about which operationalization to choose, one is on the safe side in terms of
the Brunswik symmetry principle if (too) broad operationalizations are applied (and then
different aggregation levels are investigated).

In summary, on the one hand, Zech et al.’s (2017) conclusion that the Brunswik symme-
try principle should be taken into account when interpreting the results within, as well as
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between, different studies can be explicitly endorsed, whereby greater significance should
be attributed to those studies that are based on symmetrical (fair) comparisons. On the
other hand, as outlined above, considering the Brunswik symmetry principle is also helpful
and necessary in designing studies when selecting the appropriate operationalizations.

4.3. Limitations and Future Research

The findings of the present study need to be interpreted in light of some limitations.
First, participants were recruited from the subpopulation of university students, which
generally has above-average cognitive abilities. As such range restrictions usually result in
reduced correlations, the associations between the cognitive constructs were most likely
underestimated. Therefore, the presented results should be interpreted with caution in
terms of the general association between working memory, fluid reasoning, and CPS.

Second, as Wilhelm and Schulze (2002) emphasized, investigating cognitive constructs
with differently strong time restrictions can lead to biased correlations due to varying
degrees of variance in mental speed. For example, if working memory tasks have strong
time constraints but the fluid reasoning and CPS measurements have less time constraints,
then the different time constraints alone result in a lower correlation between working
memory and CPS compared to the correlation between fluid reasoning and CPS. In the
present study, all measures can be considered as speeded power tests, which means
that rather liberal time restrictions were used to ensure an efficient and pragmatic test
administration. However, it may well be that there have been differently strong influences
of mental speed in the operationalizations of the three cognitive constructs. In terms of the
Brunswik symmetry principle, this also shows that, when choosing operationalizations,
not only the level of aggregation and the task contents have to be considered (as it was
done in the present study) but also that a symmetrical (fair) comparison is only possible
if the operationalizations have comparable time constraints. This issue has received too
little attention in previous CPS research and should be considered more strongly in future
studies, especially on construct validity.

Third, we partly derived our expectations regarding the associations between working
memory, fluid reasoning, and CPS from the assessment of the extent to which the content
requirements of the operationalizations are similar (i.e., symmetrical or fair in terms of
the Brunswik symmetry principle). Based on the findings of (Süß and Kretzschmar 2018),
we assumed that the CPS measure FSYS puts strong demands on figural abilities, to a
slightly lesser extent on numerical abilities, and very weak demands on verbal abilities.
Furthermore, as we did not consider the difference between the figural and numerical
requirements in FSYS to be particularly large and as the relation between numerical and
figural abilities is relatively strong, we did not formulate specific expectations regarding
the figural and numerical operationalizations. However, our assessment of the content
requirements, and thus our expectation, could be disputed because another previous
study argued that verbal and not figural or numerical requirements are predominant in
FSYS (Wagener 2001). What follows from this is that, in order to choose an appropriate
operationalization in terms of the Brunswik symmetry principle and, thus, to derive correct
expectations, it is necessary that the requirements of a specific operationalization are known.
While this is relatively feasible in the case of working memory and fluid reasoning tasks
(see, e.g., Oberauer et al. 2003; Süß and Beauducel 2005), it is more difficult with CPS tasks,
since it is in their nature to reflect more complex requirements (Dörner and Funke 2017).
For future research, it is therefore important to examine theoretically and empirically which
content requirements dominate the respective operationalizations (see, e.g., Kretzschmar
et al. 2017).

Fourth, only one, instead of multiple, operationalizations of CPS was used. Thus,
generalizations with respect to other CPS operationalizations are only possible to a limited
extent (Kretzschmar 2017). The use of different CPS operationalizations in future studies
would also reflect the fact that the Brunswik symmetry principle should not only be
applied to the predictor side (see left side of Figure 1) but that the symmetry principle
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should also be considered for the criterion side (see right side of Figure 1). Different CPS
operationalizations, ideally with different and distinctive contents (i.e., verbal, numerical,
and figural), would allow to investigate different levels of aggregation for the criterion
side, as well. An alternative way to consider the Brunswik symmetry principle also on
the criterion side would be to consider a more fine-grained scoring of the problem solving
processes within one CPS operationalization. For example, there are various approaches in
CPS research to evaluate behavioral patterns in order to solve the problem (e.g., exploration
or knowledge acquisition strategies); see, (e.g., Greiff et al. 2015; Müller 2013; Wagener
and Wittmann 2002), which are located at a lower level of aggregation compared to the
commonly used performance scoring (e.g., problem solved or not). Such analyses were
outside the scope of the present study but are potentially promising for future studies.

Finally, it has to be emphasized that the present study should be considered as
exploratory. The present study, as well as previous studies (e.g., Greiff et al. 2016; Zech et al.
2017), applied secondary data analyses to existing data sets, which were used for related
research questions before. This procedure can increase the false positive rate (e.g., Gelman
and Loken 2013; Thompson et al. 2020). Therefore, the research question whether working
memory plays a unique role in CPS independent of fluid reasoning has to be addressed in
further replications studies based on new data sets see (Weston et al. 2019).

5. Conclusions

The present study provides little evidence that working memory plays a unique part
in solving complex problems independently of fluid reasoning. However, there is a need for
further studies on this research question, which particularly take into account the influence
of the Brunswik symmetry principle. As exemplified in the present study, the Brunswik
symmetry principle is not only crucial with regard to the interpretation of empirical results
but can also be useful for study planning. Thus, future studies investigating the interplay
of different cognitive abilities will greatly benefit if the Brunswik symmetry principle
is considered.
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